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Abstract Segmenting materials’ images is a laborious and
time-consuming process, and automatic image segmentation
algorithms usually contain imperfections and errors. Inter-
active segmentation is a growing topic in the areas of image
processing and computer vision, which seeks to find a balance
between fully automatic methods and fully-manual segmen-
tation processes. By allowing minimal and simplistic inter-
action from the user in an otherwise automatic algorithm,
interactive segmentation is able to simultaneously reduce the
time taken to segment an image while achieving better seg-
mentation results. Given the specialized structure of materi-
als’ images and level of segmentation quality required, we
show an interactive segmentation framework for materials’
images that has three key contributions: (1) a multi-labeling
approach that can handle a large number of structures while
still quickly and conveniently allowing manual addition and
removal of segments in real-time, (2) multiple extensions to
the interactive tools which increase the simplicity of the inter-
action, and (3) a web interface for using the interactive tools
in a client/server architecture. We show a full formulation of
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each of these contributions and example results from their
application.

Keywords Image segmentation - Materials volume
segmentation - Segmentation propagation - Interactive
segmentation - Graph-cut approaches

1 Introduction

Interactive segmentation is a rapidly growing area of com-
puter vision and has seen heightened interest recently
[28,49]. While traditional segmentation seeks to identify
objects/structures within an image in a fully automated fash-
ion, interactive segmentation, similar to active learning [43],
accomplishes the goal of image segmentation while incorpo-
rating a sparse number of user interactions which are included
as additional constraints or guidance in the segmentation
model or algorithm. These interactions may take on differ-
ent forms, and may include drawing a bounding box [39],
roughly outlining a boundary [32], or drawing brush strokes
inside and/or outside the object of interest [3,41,54,57]. A
desired property of an interactive segmentation approach is
that the user interaction be as convenient (i.e., low cogni-
tive load) and sparse (i.e., few in number) as possible, while
simultaneously providing immediate feedback to the user on
every interaction.

One domain that has been unaddressed in interactive seg-
mentation literature is materials science image segmentation,
where there are no existing techniques focusing solely on
segmenting materials’ images using an interactive approach.
Materials science is especially important to the development
of new metals and biomaterials, and presents unique chal-
lenges in image segmentation. First, materials’ images often
are 3D volumes [21] made up of a sequence of individ-
ual 2D image “slices,” as shown by the two sample slices
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Fig. 1 Two adjacent slices of a titanium image volume [40]. Image intensity inverted for clarity; the original is similar in appearance to Fig. 11

in Fig. 1 !. This large number of slices must all be seg-
mented to fully and properly analyze the 3D structure of
the material. Second, depending on the inter-slice distance,
the 2D structure in two neighboring slices may show high
continuity. Such inter-slice structure continuity must be con-
sidered to achieve accurate segmentation. Third, materials
volumes consist of numerous substructures (e.g.,““grains”
in a metallic material, or “cells” in a biomaterial, etc.)
with complex relationships (e.g., adjacency/nonadjacency
relationships) among them that determine many desir-
able properties of the material [38,51]. Existing interactive
segmentation techniques often only focus on foreground-
background segmentation [3,39], and may not scale to the
large number of substructures present in materials’ images.
Other methods may handle multiple structures [49,50], but
do notincorporate any prior knowledge about the unique rela-
tionships among substructures in materials’ images [37,52].
Finally, the imaging techniques used to obtain a materials
image volume may result in significant noise or other ambi-
guities that increases the difficulty to segment a materials
image volume in a fully automatic fashion. Many of these
properties are not unique to materials’ images, e.g. medical
images may exhibit complex relationships, neuroimages may
have high continuity between slices, natural images may con-
tain numerous structures, etc. and as such, advances in inter-
active segmentation may have far-reaching consequences.
In this paper, we present an interactive segmentation
approach to segment materials science image volumes. We
show that an existing propagation-based materials image seg-
mentation approach [58] can be extended to allow for con-
venient interactive segmentation. We illustrate the perfor-
mance of the proposed approach by using it to segment a
materials image volume using smaller number of interac-

! For clarity, we inverted the image intensity in this figure, as well
as several other figures in the later sections. The original is similar in
appearance to Fig. 11.
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tions compared with general-purpose interactive segmenta-
tion methods that do not incorporate materials-specific priors.
Further, we develop extensions to the interactive tools we
present—namely, annotation repropagation, parameter esti-
mation, and salient region detection extensions—and show
that these extensions lead to improved performance. Finally,
we illustrate the client/server architecture used to build a
web application for implementing the proposed approach and
related extensions.

1.1 Related work

Though no existing work focuses on the materials image seg-
mentation application using interactive segmentation, we dis-
cuss related work that focuses on either of these two aspects.

There are anumber of existing, non-interactive approaches
to segment materials’ images [10,48]. Among the most
prominent is the work of Comer et al. [12,13] on the
EM/MPM algorithm, originating from [30]. Other meth-
ods that have been specifically used on materials’ images
include graph cut [20,58], stabilized inverse diffusion equa-
tions [19], Bayesian methods [11,47], and the watershed [29]
method. Most often, materials’ images are opportunistically
segmented by the simplest tools available, such as thresh-
olding [17,45], or out-of-the-box methods such as water-
shed or normalized cut [46]. However, these methods do not
incorporate any interaction for manual refinement by a user.
Some of these approaches may require significant time to
run; requiring the user to examine and correct errors only
after the algorithm is complete may not be practical if rapid
refinement is desired. Conversely, the general-purpose inter-
active segmentation techniques discussed previously do not
incorporate any specific domain knowledge about materials’
images, and thus may require additional effort on the part of
the user than may otherwise be needed when segmenting a
materials’ image volume.
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General interactive methods exist to segment the object of
interest using a model learned from user interactions [3,39,
54]. Other approaches incorporate interaction into morpho-
logical operations (watershed) [49], co-segmentation [1], or
incorporate machine-learning to aid in the interactive process
[28,53]. These interactive methods have been applied to a
number of domains, including natural images [39], medical
images [4], and neuroimages [49,50].

Interactive methods that focus on segmenting 3D volumes
share elements in common with the proposed work. The
majority of these related works are in the medical imaging
area. [18] minimizes an energy function, though the formu-
lation is different from the proposed approach. Both [9,53]
employ a GPU implementation, however [9] includes a learn-
ing component, as we do in Sect. 7. Most similar to the pro-
posed method, [33] uses a propagation framework to do 3D
interactive segmentation on medical images. A graph cut-
based minimization is used by [2], as is used in this paper.
Finally, [22] introduce a web interface for interactive seg-
mentation, as we do in this paper. All of [2,9,18,22,33,53]
are specific to medical applications, and thus are targeted at
a single or small number of segments, and are not able to
handle large numbers of segments with different adjacency
relations, as we do in this paper.

There are also a number of general 3D interactive meth-
ods that are not specific to medical images. Among these
is [26], which is designed specifically to divide an existing
3D mesh, and does not apply to the serial-sectioned 3D vol-
umes used in this paper. Further, [25] builds a tool-focused
framework that includes “hole filling,” “point-bridging,” and
“surface-dragging” tools. We similarly develop a tool-based
approach along with multiple extensions, but we use a dif-
ferent approach (addition and removal) for the interaction in
this paper. Finally, most similar to the materials application in
this paper, the proprietary INTERSEG [35] plugin for ImageJ
[42] focuses on interactively segmenting cell-like structures.
These structures, however, have different types of adjacency
relations compared with the grain-structures discussed in this
paper, and thus the INTERSEG plugin uses different tools for
interaction that we introduce in Sects. 3 and 4.

The remainder of this paper is organized as follows: In
Sect. 2 we discuss the background for the proposed inter-
active segmentation approach for materials image volumes.
We further discuss how the proposed approach handles seg-
ment removal in Sect. 3 and segment addition in Sect. 4. The
first extension of the proposed method in Sect. 5 discusses
how adjacent slice similarity can be leveraged to allow for
segment repropagation to reduce the number of interactions
required. In Sect. 6, we show how some of the parameters
of the proposed method can be automatically estimated. The
final extension of the proposed approach in Sect. 7 shows how
asimple online learning system can detect salient regions that
should be given extra attention by a human annotator. In Sect.

9, we evaluate the proposed method’s performance against
another general-purpose interactive segmentation method.
Finally, in Sect. 10 we provide brief concluding remarks.

2 Interactive materials image segmentation

In [58] we developed a 3D materials science image segmen-
tation method by propagating segmentation SU of a slice U
to a neighboring slice V, resulting in a segmentation SV.
This way, using an initial segmentation on one slice, we
can repeatedly propagate this segmentation to the remaining
slices in the volume to obtain a complete 3D segmentation.
This propagation was done while preserving the topology
(i.e., non-adjacency relations among 2D segments), which
led to a better performance when compared with methods
that did not incorporate topology as a prior. Specifically, let
the segmentation
sY=(sV,s¥, ..., sV},

where Sl.U, i = 1...n are disjoint segments in slice U,
and this collection of segments makes up a partition of the
slice U,

Anexample is shown in Fig. 2 where all the segments (“grain”
structures) are separated by red lines. To propagate segmen-
tation SV to a new slice V to yield the segmentation SV, we
minimize the energy

ES)Y =10, + D @p(S'.S)) (1)

pev {p.q}ePy

where P is the set of all four-connected pixels in V. The
unary term © p(SiV), which represents a cost for a pixel p
being assigned to a segment Sl.v in slice V, was set to reflect
the structure continuity between U and V,

0, distance(p, SY) < d

00, otherwise

0,85 = [ 2

where d is a dilation distance that reflects the maximum pos-
sible structural change between U and V [58]. In addition, the
binary term @, (Siv, S]‘./), which represents a cost for a pair
of neighboring pixels p, g being assigned to two (possibly
the same) segments SiV, Sj‘./, was constrained to preserve non-
adjacency segment relationships from U to V; i.e., any two
segments SiV , S/‘./ are allowed to be adjacent (have pixels that
are four-connected between them) only if the corresponding

segments SI.U, Sﬁ/ are also adjacent,

@ Springer
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Propagation

Fig. 2 Example of segmentation propagation, highlighting different
types of topology changes, including segments that become unadjacent
in V ($2, S3), segments that disappear in V (purple), segments that

0, i=j
@, (SY. 8V =10 (s, s7y¢ AV 3)
g(p.q), {87,857y e AV

where AY contains segment pairs that are adjacentin S, and
we set g(p, q) to reflect the image boundary information in
V [58]. An example is shown in Fig. 2, where S} and S
are allowed to be adjacent because S 1U and Sg are adjacent
in SY. However, S 1V and S X are not allowed to be adjacent
(have an infinity penalty) because S f] and S f are not adjacent
in SY. This topology constraint was found to be particularly
important for materials’ images, and our proposed method
was able to outperform other methods that did not incorporate
such a prior.

While finding the global minimum to this cost is NP-hard,
this cost has been shown to be minimizable to a local opti-
mum using a graph-cut approach [6,55]. However, one phe-
nomenon that was observed in this previous work was that,
during propagation, 2D structure topology between U and
V might not always be fully consistent. For example, a new
3D structure with no intersection in slice U might appear in
slice V, e.g., the structure in the yellow circle in Fig. 2. Simi-
larly, a 3D structure intersected by slice U might disappear in
slice V, such as the structure circled in magenta in Fig. 2. This
breaks the topology constraints given in Eq. (3) in some local
regions. This may lead to spurious segments and missing
structures, as circled in green and blue respectively, in Fig. 2.

Our method made use of a brute-force automated search to
locate such spurious and missing structures in V [58]. Given a
large number of substructures in a material sample, it is com-
putationally expensive to examine every location for possible
spurious or missing structures. Furthermore, given the small

@ Springer

appear in V (yellow), an erroneously missing segment (blue) and a
spurious segment (green). Image intensity inverted for clarity

inter-slice distance, spurious or missing structures are usu-
ally very small and thus difficult for an automatic algorithm to
segment correctly. In this paper, our goal is to develop effec-
tive interactive tools to allow a user to conveniently specify
the local areas that contain spurious or missing structures, and
incorporate such interactions to refine the segmentation SV to
a corrected SV on slice V, using the same energy minimiza-
tion algorithm. More specifically, we propose to allow the
user to correct these two types of segmentation errors within
this segmentation propagation framework by: (a) annotating
the location of a new segment to handle cases where a new
structure appears in slice V, and (b) annotation of existing
segments that should no longer be present in segmentation
sv.

These interactions are inherently local because the 2D
cross section of a 3D structure shows very small size before
appearing or disappearing from a neighboring 2D slice.
Therefore, correcting SV to SV can be achieved by using the
same energy minimization in local image areas around the
interactive annotations. This is also important because inter-
active segmentation requires instantaneous user feedback.
The previous propagation method segmented entire slices,
which was more computationally intensive than is desirable
in an interactive system. We will further discuss these two
interactions, and how we identify local regions for each, in
the following subsections.

3 Removal of spurious segments

For this interaction, we allow the user to select a spurious
segment S,Y for removal by clicking the mouse on this seg-
ment in a visualized segmentation of SV . Instead of naively
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(a) (b) (©

Fig. 3 Example selection of a spurious segment S,Y for removal. a

Chosen S ,Y and surrounding segments. b Local region extracted around
S,(V . ¢ The updated segmentation in the extracted local region

removing this segment by arbitrarily merging it into one of its
neighbors, we use the same energy minimization discussed
above to assign the individual pixels in § ,:/ to potentially dif-
ferent neighboring segments. As discussed above, we iden-
tify a local region in which we update the segmentation.
Specifically, this local region consists of the specified S,Y
and its neighboring segments, e.g., SV, Sg/ , S3V surrounding
the spurious segment S,:/ in Fig. 3a, and re-run the energy
minimization within this local region after modifying the ®
term to incorporate the interaction, resulting in an updated
segmentation in this local region, as shown by the example
in Fig. 3c. For ease of notation, we use similar notation to
the adjacency definition in Eq. (3) by using {A" }; to refer to
the set of segments neighboring the segment S,l/ . This way,
the local region for updating the segmentation is

L={A" WS )

In this local region, we rerun the energy minimization
of Eq. (1) by modifying the ® term. In particular, we do not
allow any pixel to be assigned to S,:/ since this segment is to be
removed. Instead, the pixels initially in S ,y can be assigned to
any of the segments in {AV}k with O cost for the ® term, i.e.,

0, S e{A )

V 9.5V =
Vp e Sk , OP(SI ) [oo, otherwise 5)

Vp ¢S/, 0,8Y)=0,8))

By updating ® in this fashion, we do not require the pixels
previously in S ,l/ merged into a single neighboring segment.
Instead, these pixels may be assigned to more than one seg-
ment in { A" };, as shown in Fig. 3c.

Note that this interaction is very simple and convenient,
as it requires only a single click anywhere inside the spuri-
ous segment S,Y . The full algorithm for removing spurious
segments is summarized in Algorithm 1.

4 Addition of missing segments

Unlike removal, interactively annotating an additional struc-
ture cannot be solely formulated as a simple modification

Algorithm 1 Interactively specifying segment to remove.

1: function REMOVESEGMENT(S", S)

2 L« {AU S,,y

3:  For the pixels £, build graph for energy minimization
problem from Section 2

4:  ©® <« set from Eq. (5)

55§V« sV incorporating the updated segmentation in
L

6:  return updated SV

7: end function

(b)

Fig. 4 Annotating the addition of a missing segment. a Segmentation
SV with a missing segment near the center of the image. b Annotation
of a center point c, along with a seed radius s and a dilation radius d, and
the identified local region for updating the segmentation. ¢ The updated
segmentation of the local region shown in (b)

of the ® term in the energy minimization formulation. This
is because the multi-labeling problem used to optimize the
energy minimization form in Eq. (1) optimizes over a fixed
set of segments, and cannot introduce new segments. Thus,
for each missing segment, we must explicitly create a new
segment at the location interactively specified by the user.
Based on the initial segmentation S V. = {S v S; ,
..., SY}, we take as input from the user an annotation speci-
fying the center location ¢ of the new segment S‘nv 41+ Inaddi-
tion to this, we also accept two parameters from the user: (1)
the seed radius s specifying a circular region around ¢ such
that this circular region is completely contained within the
missing structure; (2) a dilation radius d, which is similar to
the dilation parameter used in Sect. 2, such that the circular
region with this dilation radius d centered at ¢ completely
covers the missing structure to be segmented. We explicitly
enforce that d > s for any choice of s. We call pixels within
the seed radius s of ¢ “seed pixels” and pixels within the
dilation radius d of ¢ “dilation pixels.” In this interaction,
seed pixels are guaranteed to be part of the missing segment
that is added, as shown by the green circle in Fig. 4b, and
dilation pixels, excluding seed pixels, are potentially part of
the missing segment that is added, as shown by the blue area
in Fig. 4b. This makes the selection of s and d conceptually
simple for the user to tune. In Sect. 6, we discuss how to
automate the selection of s and d to further reduce the user’s
burden when interactively segmenting a materials volume.

@ Springer
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Algorithm 2 Interactively specifying segment to add.

1: function ADDSEGMENT(S, ¢, s, d)

2: L < union of all segments that contain a seed pixel or
dilation pixel

3:  Forthe pixelsin £, build graph for energy minimization
problem from Section 2

4:  ©® <« set from Eq. (6) and Eq. (7)

s 8V <« sV incorporating the updated segmentation in
L

6:  return updated SV

7: end function

(a) (b) (¢

Fig. 5 Alternate annotation shapes for addition. a Standard point-
annotation. b Line annotation. ¢ “Scribble” annotation. Dark areas are
the seed pixels and grey areas are the dilation pixels

Similar to the removal interaction in Sect. 3, we define
a local region around the specified ¢ to update the segmen-
tation of SY. Specifically, we define this region by taking
all segments in SV that contain one or more seed or dila-
tion pixels. In this local region we modify the ® term of the
energy minimization in Eq. (1) to obtain an updated segmen-
tation. Specifically, we allow all seed and dilation pixels to
be reassigned to the new segment S‘r‘l/ 41 by setting

- 0, llp—cll=d
0,87 )= 6
pGni1) 00, otherwise ©)

where || - || is the Euclidean distance between pixels p and c.
Furthermore, to ensure that the seed pixels are always guar-
anteed to be part of S,Y 41 We set an infinity penalty for seed
N4

pixels assigned to any segment other than S, ;,

o0, lp—cll<sandi #n+1

0,8 =
p(Si) G),,(Siv), otherwise.

@)
The full algorithm for adding a missing segment is summa-
rized in Algorithm 2.

Note that annotations need not be constrained to a sin-
gle point, as shown in Fig. 5a. Line-based annotations, as
shown in Fig. 5b can be defined by setting seed pixels to
be all those pixels within a distance s of any position along
an annotated line. Dilation pixels can be defined similarly.
Further, any “scribble”-like annotation, provided it remains

@ Springer

connected and without holes, can be morphologically dilated
by s or d to obtain seed or dilation pixels, respectively, as
shown in Fig. 5c.

5 Annotation repropagation

While annotations defining addition or removal of segments
can be made on a single slice, they may provide valuable
information for adjacent slices and, as such, can be propa-
gated (which we refer to as “repropagation”) to these adjacent
slices, similar to the segmentation propagation discussed in
Sect. 2. For removal, we simply locate the same segment in
all adjacent slices (if present), and repeat the removal opera-
tion summarized in Algorithm 1. For addition, illustrated in
Fig. 6, we create the new segment as summarized in Algo-
rithm 2, after which we repropagate the segmentation, includ-
ing the newly created segment, to the adjacent slices in the
same manner as discussed in Sect. 2. This repropagation can
be done within the local region £ on the adjacent slices for
efficiency, and terminates if the new segment is no longer
present during the repropagation (determined by the energy
minimization discussed in Sect. 2).

When errors are small, such annotation repropagation may
not be particularly beneficial. However, when there are gross
errors, annotation repropagation can reduce the number of
needed annotations significantly.

Ui+1

Ui—l Ui

Fig. 6 Annotation repropagation for addition. The blue annotation on
slice U’ (row 1) yields an updated segmentation of slice U (row 2). This
new segmentation can be repropagated to the neighboring slices U'~!
and UT! (row 3) using the same propagation approach introduced in
Sect. 2. Image intensity inverted for clarity
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6 Parameter estimation

When interactively adding a new segment, as discussed in
Sect. 4, the seed radius s and dilation radius d are required
to be specified by the user. This results in additional burden
on the part of the user. In this section, we develop a para-
meter estimation approach to automatically select these two
parameters so the user need only override them in very rare
cases, or not at all.

We do this by leveraging information about the center ¢
the user provided relative to the initial segment in which it
resides. Generally a missing segment occurs when 2D cross-
section intersects a new 3D structure in V. Given a small
inter-slice distance, as discussed in Sect. 2 where neighbor-
ing slices have large similarity, we expect that these miss-
ing segments are often small compared with its neighbor-
ing segments in slice V. An example is shown in Fig. 7a,
where a small segment is missing (indicated by the yellow
circle) in the segmentation S : this missing segment is mis-
takenly merged into a large neighboring segment S;’ . Intu-
itively, placing c near the boundary of S bv likely indicates the
missing segment is small, as shown by Fig. 7b. Conversely,
placing c closer to the center of S }Y likely indicates the result-
ing missing segment is large as shown in Fig. 7c. We make

(a) (b)

(©) (d)

Fig. 7 Automatic selection of seed radius s and dilation radius d. a
A missing segment located within a large segment S,Y . b, ¢ Selections
of ¢ at varying distances from the boundary of S [Y , resulting in different
estimations of 5. d Updated S¥ by adding a missing segment using the
seed center ¢ shown (b) and the proposed parameter estimation method
to determine s. Image intensity inverted for clarity

a simplifying assumption that we do not allow the missing
segment to spill over the boundary of SLY . For example, the
selection of ¢ and s in Fig. 7b is able to generate the updated
segmentation shown in Fig. 7d.

To obtain an estimation of s we start by setting s = 0,
and we then increase s by a small € amount until the cir-
cle centered at ¢ with radius s is within € distance of the
boundary of the containing segment S, as shown by the
arrow in Fig. 7b, c. In materials’ images, the majority of
newly appearing structures when moving from one slice to
another are usually near the boundary of an existing structure
S IY (near a “Y”-junction boundary between structures). This
automatic approach is ideally suited for these cases. When
the user specifies a c that falls directly on a segment bound-
ary in SV, we default to requiring user-supplied s in these
less-common cases. For estimating d, it is scaled according
to the value of 5. Specifically, we setd = 2 - 5. As shown in
Sect. 9, this approach saves both time and effort.

7 Salient region detection

Because materials’ images can be very large and complex, it
can take a significant amount of time for a human annotator
to review the segmentation of such a large image to determine
where it may require additional interaction. In this section, we
introduce a salient region detection approach that identifies
candidate regions highlighting the areas most likely to need
additional interaction. In this work, we define a salient region
as a subset of the complete image that is most likely to require
interactivity, i.e. where the segmentation shows large uncer-
tainty. Since the addition of missing segments is the most
time-consuming annotation task, we focus on detecting the
edges in the image that are not identified as segment bound-
aries, indicating a missing segment, for this salient region
detection. As such, we identify prominent edges fragments
that are not segmented during the propagation as candidate
regions, and use a SVM classifier [14] to learn which candi-
dates are truly salient regions, and which are noise that can
be ignored by the human annotator. These salient regions are
later enclosed in a bounding box for easier visualization.
More specifically, we use the online learning [44] system
outlined in Fig. 8. We first use the Canny edge detector [8] in
areas that are a fixed distance from the segmentation bound-
aries, preventing edges in the image which already fall on
segmentation boundaries from being considered candidates,
effectively leaving “residual” edges, which may correspond
to either edges of missed structures or noise. The output of
the edge detector is dilated slightly and then separated into
connected components to produce candidate salient regions,
which are then classified using an initial pool of 300 posi-
tive and negative samples to determine which should be pre-
sented as salient regions. Finally, when the user is presented
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— Canny edge

detection ignoring
—1 segment boundaries

Segmentation

Samples

Connected / Classifier

Fig. 8 Salient region detection pipeline. Edges are detected and clas-
sified as salient or non-salient. Those classified as salient are then shown
in a bounding box displayed on the image to guide the interactive seg-

with the salient regions highlighted on the segmentation, any
subsequent interactive annotations are converted to positive
samples, and remaining unannotated salient regions are con-
verted to negative samples. This process is then repeated for
the next image/segmentation pair, with updated samples inte-
grated into the classifier.

To classify each candidate salient region, we extract a fea-
ture vector consisting of multiple shape and intensity prop-
erties, including

The total area of the region,

The minor and major axis length of the ellipse fit
to the region,

The maximum intensity inside the region, and

The mean intensity inside the region.

These properties can be computed quickly, which fits well
with the real-time requirements of the interactive segmenta-
tion problem. For the classifier, we use a SVM with a RBF
kernel (y = 0.01, C = 1.0), which can be retrained while a
new image is being annotated. Sample salient region detec-
tionresults are shown in Fig. 9, with true positives highlighted
by blue bounding boxes and false positives highlighted by
yellow bounding boxes. We can see that false positive detec-
tions of salient regions may occur when there are strong edge-
like noises present in the image. The performance of this
classifier on the initial segmentation of the Ti-21S dataset,
trained on 128 previously recorded human annotations, is
shown in Table 1, where FP, FN, TP, and TN represent false
positives, false negatives, true positives and true negatives,
respectively.

8 Implementation

The energy minimization components, along with the app-
roach from Sect. 2, are implemented in Python [36] using
the NumPy/SciPy [24], scikit-learn [34], and OpenCV [7]
libraries, along with the publicly available graph cut opti-
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Interaction

mentation. Based on the interaction, positive and negative samples can
be extracted to enhance the classifier when used on other slices in the
volume

[ 2

Fig. 9 Qualitative results of salient region detection. True positive
detections of salient regions are surrounded by blue bounding boxes.
Red curves are the detected segment boundaries before interactive seg-
mentation. A false positive detection of salient regions is also shown
surrounded by a yellow bounding box. Image intensity inverted for clar-
ity

mization (GCO) [56] library based on [5,6,27]. The inter-
active interface is built as a web application using the
Django [15] web framework for the backend, and a custom
single-page JavaScript client as the frontend. In the follow-
ing, we discuss the internal architecture that enables interac-
tion with the large images used in the proposed system, along
with the developed interface.

8.1 Architecture

The proposed approach is implemented using a client/server
architecture that allows different frontend interfaces to meet
different needs for interaction. As shown in Fig. 10, our
implementation consists of a large disk drive as a datastore, a
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Table1 Salient region detection classifier results on the initial segmen-
tation of the Ti-21S dataset after training on 128 previously recorded
human annotations

Slice FP FN TP TN Precision Accuracy
1 1 1 3 17 0.75 0.91
2 1 3 7 9 0.88 0.8
3 2 2 6 22 0.75 0.88
4 1 1 11 10 0.92 0.91
5 2 6 2 30 0.5 0.8
6 1 4 1 19 0.5 0.8
7 1 3 4 0.8 0.69
8 1 3 7 0.88 0.79
9 1 4 11 15 0.92 0.84
10 1 5 10 21 091 0.84
Total 12 32 62 156 0.84 0.83
Serialized Dataset
| utlju?|| Ul un | o
- S| sz s3|°**° | s |g
Disk L ., 9
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g ©
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Fig. 10 Overview of the client/server architecture used to implement
the proposed approach. Large datasets are persisted on disk with both
the underlying image (U') and segmentation from the automatic propa-
gation approach (S7) saved for retrieval. A cache allows multiple inter-
actions that modify the segmentation S’ to be saved in memory, where
the image and segmentation can be quickly retrieved and modified. The
client may explicitly issue a “Save” request to persist changes made in
the cache onto disk

cache that is used as a scratch space, and a client, in the form
of a web application, that uses a REST API to send interac-
tions to the server. Placing all the data on a hard disk allows
large materials’ images to be stored. However, since there
may be more than one interaction required for a materials
image, we employ an in-memory cache between the client
and server so that interactions are only CPU-bound and are
not slowed by 1/O operations. We provide an explicit “Save”
operation triggered from the client that allows changes intro-
duced in the cache to be made permanent on disk. In addition,
our architecture can use a name-spaced cache to safely allow
for a multiple-client environment, limited only by the cache
size and CPU usage needed to run the energy minimization
for each interaction.

8.2 Interface

As shown in Fig. 11, the client consists of a number dis-
tinct areas that facilitate interacting with a selected materials
image, obfuscating any client/server communication as much
as possible.

InFig. 11a, we present the user with a menu of tools allow-
ing for the selection of interaction type, along with sliders to
control the parameters of the addition operation in Fig. 11b.
We allow slice selection by showing thumbnails of each slice
in Fig. 11c, which allows the user to choose the slice to oper-
ate on, which is subsequently displayed in the designated
display area shown in Fig. 11d where the interactive tools
may be used. We also record log output in Fig. 11e listing
actions performed by the client so that all interactive sessions
may be reproduced as needed. Finally, an example annotation
is shown in the display area in Fig. 11f.

The particular tools available in the menu (Fig. 11a) are
shown in Fig. 12. Specifically, we include a selection menu
to choose the particular interactive tool in Fig. 12a (addi-
tion, removal, addition with parameter selection, etc.). We
also include a selection menu in Fig. 12b to choose how the
segmentation is displayed on the raw image, and whether
the salient region identification is shown overlayed on top
of the segmentation. Commands to send the annotations to
the server are shown in Fig. 12¢, where different commands
perform different types/sequences of energy minimization
(only local, global to the entire image, local with annotation
repropagation, etc.). Finally, we include a menu of system
tools in Fig. 12d that allow the user to erase existing annota-
tions (reset), revert the work from the cache to the version on
disk (reload), and save work from the cache to be permanent
on disk (save).

An annotator’s workflow consists of: (1) loading a cho-
sen slice using Fig. 11c, (2) examining this slice using the
display area in Fig. 11d, (3) choosing an appropriate anno-
tation tool from the menu in Fig. 12a, (4) making the requi-
site annotation in the display area as shown by the example
in Fig. 11f, (5) sending annotations to the server with the
commands in Fig. 12c, and (6) saving the work, when satis-
factory, with the menu item in Fig. 12c. Though we include
keyboard shortcuts to accelerate this workflow, for our exper-
iments in the next section, we explicitly follow this workflow
using a mouse, and record all mouse clicks made to do the
evaluation.

9 Experiments
9.1 B-Ti grains in Ti-21S

To evaluate the proposed interactive segmentation method,
we use it to segment a sequence of 11 (indexed from 0
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to 10) microscopic titanium images [40] provided by Dave
Rowenhorst, NRL. We measure the effort (i.e., number of
clicks) used to segment each slice in the dataset, as well as
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the overall time expended by the user to segment a slice.
The previous segmentation propagation approach in Sect. 2
requires acomplete segmentation on one slice as an initializa-
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Fig. 14 Performance of the proposed interactive segmentation method compared with our previous automated method [58] on the 11 slices,
measured by the boundary coincidence with the ground truth segmentation a F-measure, b precision, ¢ recall
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Fig. 15 Qualitative results where each subfigure shows the initial auto- SV (right). Note that f and g illustrate removal annotation and the
matic segmentation SV (lef); the human annotation (middle) with the remaining illustrate addition annotation. Image intensity inverted for
seed pixels in green and dilation pixels in yel/low, and “X”s indicat- clarity

ing spurious segments to be removed; and the updated segmentation

tion. We count the manual segmentation on this initial slice  of clicks) and time. In addition, we produce a hybrid of our
into the effort and time required. We present the proposed  previous automatic method [58] discussed in Sect. 2 and the
method both with and without using the automatic parame-  intelligent scissors method, which we call “intelligent scis-
ter estimation discussed in Sect. 6. sors + propagation” in Fig. 13. This approach uses the method

For comparison, we use the readily available “intelligent ~ from Sect. 2 to propagate a segmentation from an initial slice
scissors” interactive segmentation method [32]. Using the  to the remaining slices, but it uses the intelligent scissors
intelligent scissors tool, we independently segment all 11 tool [32] to carry out the interactive component instead of
slices from the same dataset, evaluating both effort (number  the interaction proposed in this paper.
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Fig. 16 Synthetic volume generated by DREAM3D [23] to evaluate
the proposed interactive segmentation

The results of this comparative experiment are shown in
Fig. 13. Note that, in propagated methods (“Proposed,” “Pro-
posed + Parameter Estimation,” and “Intelligent Scissors +
Propagation”), the first slice is used as the initial slice U, so it
requires significantly more effort and time to segment com-
pared with the remaining slices. From Fig. 13, we can see that
the method proposed in this paper (“Proposed”) allows much
more rapid segmentation time (<5 min in most cases) and
with much less effort (<100 clicks in most cases) compared
with the unpropagated intelligent scissors method. The intel-
ligent scissors method (“Intelligent Scissors™), without the
benefit of propagation, requires significantly more time and
effort. The hybrid method (“Intelligent Scissors + Propaga-
tion”) fares better than the unpropagated intelligent scissors
method, but it still requires greater effort than the proposed
method. Finally, the proposed parameter estimation method
(“Proposed + Parameter Estimation”) can further reduce both
the time and effort required by the proposed method.

In Fig. 14, we show that the proposed interactive method
is able to increase the segmentation accuracy of our state-of-
the-art materials image segmentation method in Sect. 2. As
in our previous work [58], we use the precision, recall, and
F-measure, which is the harmonic mean of the precision and
recall [31], to show the segment boundary coincidence with
the manually constructed ground truth segmentation. For

both the proposed and previous automatic methods, we prop-
agate from an initial slice O to the remaining 10 slices, and
the proposed interaction-enhanced method increases perfor-
mance for all slices. Finally, qualitative segmentation results
using the proposed interactive method are shown in Fig. 15
where we show the automatic segmentation results with spu-
rious or missing segments, the human annotation, and the
updated segmentation.

9.2 DREAM3D synthetic volume

We further evaluate the proposed interactive segmentation
approach by generating a synthetic grain volume using
DREAMS3D [23]. As shown in Fig. 16, we generate a
12 pm x 12 pm x 2 pwm volume where each slice is
0.06 pm x 0.06 pm x 0.1 pm in size. This volume is sam-
pled as a 200 x 200 x 20 image, sliced along the z-axis
into 20 images of size 200 x 200 each. We use these 20
synthetic slices, along with a noise model extracted from
the above Ti-21S material, as additional data to evaluate the
proposed interactive segmentation. As before, we evaluate
interactive methods that start from an initial segmentation,
and one method that does not. For methods starting from
an initial segmentation, we use the results of propagating the
ground truth for the first slice to all the remaining slices using
the approach discussed in Sect. 2.

Quantitative results of this evaluation are shown in Fig. 17.
Included in this evaluation is the proposed method with the
parameter estimation discussed in Sect. 6 (“Proposed + Para-
meter Estimation”), the proposed method using the reprop-
agation method discussed in Sect. 5 (“Proposed + Reprop-
agation”), along with the intelligent scissors method used
to completely segment every slice (“Intelligent Scissors™)
and used only to correct the propagated results (“Intelligent
Scissors + Propagation”). As shown in Fig. 17a, the pro-
posed method with parameter estimation requires less effort
compared with both intelligent scissors methods. With the

Fig. 17 Evaluation on the e—e Proposed + Parameter Estimation e—e Proposed + Parameter Estimation
DREAM3D symhetic dataset e—e Proposed + Repropagation 8 e—e Proposed + Repropagation

. e—e |ntelligent Scissors e—e |ntelligent Scissors
ShOWIHg a the amount of effort 200 e—e |Intelligent Scissors + Propagation 7 e—e |Intelligent Scissors + Propagation

(number of clicks) and b time
taken for a user to interactively
segment the 20 sample slices.
Smaller values are better for
both figures

Number of Clicks

0 2

Time (Minutes)

0 5 10

Synthetic Slice Number

(a) Effort
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addition of the repropagation method, interactions are only
needed on three slices, since the corrections are then reprop-
agated to the rest of the volume, resulting in significantly
less effort than all other methods. Results for the time taken
by the evaluated methods are shown in Fig. 17b, where the
intelligent scissors methods all require more time, whereas
the proposed method with repropagation performs better than
the other evaluated methods.

10 Conclusion and future work

We have presented an interactive segmentation method
extended from our automatic segmentation propagation
approach. By allowing the user to interactively handle spuri-
ous and missing segments when propagating from one slice
to another, we show that the time required to segment a mate-
rials image volume, as well as the overall effort (number of
clicks) needed for interaction, is much less than the com-
parison “intelligent scissors” method used in popular image
processing tools. By updating the segmentation within a local
region around the interactive annotation, we are able to obtain
a fast, yet robust means to handle segmentation errors when
a new structure appears or an existing structure disappears
from the 2D cross-section of a particular slice in the volume.
We also introduce three extensions to these interactive tools:
an annotation repropagation method that allows interactions
to be propagated to multiple slices, a parameter estimation
technique to determine the seed radius when adding a miss-
ing segment, and a salient region detection method that uses
an online learning approach to guide an annotator using the
interactive tools. We presented the client/server-based web
application that implements these tools and show that the
proposed approach, extensions, and implementation all lead
to improved performance.

While this paper is focused on materials-science image
segmentation for underlying grain structures, the proposed
interactive method may be extended to the applications in
other fields. For example, many 3D medical images [4,49,
50], such as MRI and CT images, are also taken in the form of
a sequence of serial-sectioned 2D slices with good structural
continuity between adjacent slices. Furthermore, for some
medical-imaging applications [16], the structures to be seg-
mented are of large number with specific neighboring rela-
tions and they share high similarity to the grain structures
studied in this paper. In the future, we will investigate the
extension of the proposed method to improve the accuracy
of medical image segmentation.
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